END SEMESTER EXAMINATION - JULY 2023

Program: S.Y.B.Tech (Civil) sen V
Course Code: BS-BTC401
Course Name: Probability and Statistics

Note:

Duration: 3 Hours

Maximum Points: 100
Semester: IV
1417123

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together

END SEMESTER EXAMINATION - JULY 2023

END SEMESTER EXAMINATION - JULY 2023

END SEMESTER EXAMINATION - JULY 2023

ChiSquare (ia) Distribution

Table of the Student's 1 -distribution

The able gites the values of $t_{\text {ux }}$ where

	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6,314	12.076	31.221	63.057	318.310	63.620
2	1.886	2920	4.303	6.965	9.925	22.320	31.508
3	7.638	2.353	3.182	4.54 !	5.841	10.213	12.524
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	\$,476	2015	2.571	3.365	4,032	5.893	6.269
\%	1.440	1.943	2.447	3.143	3.707	5.208	5.559
7	1.415	1.895	2365	2993	3.459	4.785	5.408
8	1.397	1.800	2.309	2.696	3.355	4.501	5047
9	1.303	1.833	2.262	2.31	3.250	4.29	4.381
10	4.372	1.812	2220	2.764	3,100	4,14.4	4,587
11	1.363	1.790	2201	27:3	3. 106	4.025	4.437
12	1.356	1.782	2.179	2681	3055	3.920	4.318
13	1.350	1.771	2.160	2.550	3.012	3.852	4.221
14	1.345	1.751	2.145	2.624	2.97	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.745	2.120	2583	2927	3.606	4,015
17	1.333	$\pm .740$	2.110	2.557	2898	3.645	3.905
18	1.330	1.734	2.101	2.552	2.978	3.610	3.922
19	1.323	1.729	2.093	2539	2.861	3,575	3.823
20	1.325	4.725	2.086	2.52	2.8 .45	3.552	3.850
21	4.323	1.721	2.000	2.518	2.331	3.527	3.819
22	1.321	8.717	2.074	2.50 e	2.819	3.505	3.792
23	1.319	1.714	2.009	2500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.080	2485	2787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.650
28	1.313	1.701	2.048	2.467	2763	3.408	3.674
29.	1.311	1.693	2.045	2.402	2.750	3.300	3.659
30	1.310	1.697	2.042	2.457	2750	3.385	3.646
40	4.303	1.684	2.021	2.423	2704	3.307	3.551
60	1.290	1.671	2.000	2.350	2.660	3.232	3.460
120	1289	1.658	1.980	2358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2326	2.576	3.050	3.291

Standard Normal Distribution Table

z	. 00	01	. 02	. 03	. 04	. 05	06	. 07	. 08	. 09
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0753
0.2	0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	. 1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	. 1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	. 1844	. 1879
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224
0.6	. 2257	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2517	. 2549
0.7	. 2580	. 2611	. 2642	. 2673	. 2704	. 2734	. 2764	. 279	. 2823	. 2852
0.8	. 2881	. 2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	. 3621
1.1	. 3643	. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 41	. 4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 4357	. 4370	. 4382	. 4394	. 4406	. 4418	. 4429	. 4441
1.6	. 4452	. 4463	. 4474	. 4484	. 495	. 4505	. 4515	. 4525	. 4535	. 4545
1.7	. 4554	. 4564	. 4573	. 4582	. 4591	. 4599	. 4608	. 4616	. 4625	. 4633
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 4744	. 4750	. 4756	. 4761	. 4767
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	. 4817
2.1	. 4821	. 4826	830	. 4834	. 4838	. 4842	. 4846	. 4850	. 4854	. 4857
2.2	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 488	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4911	. 4913	. 4916
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	. 4934	. 4936
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960	. 4961	. 4962	. 4963	. 4964
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 4971	. 4972	. 4973	. 4974
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	. 4979	. 4979	. 4980	. 4981
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986
3.0	4987	. 4987	- 4987	4988	4988	- 4989	. 4989	4989	-1990	. 45,10
3.1	. 4990	. 4991	. 4991	. 4991	. 4992	. 4992	. 4992	. 4992	. 4993	. 4993
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4996	. 4996	. 4996	. 4997
3.4	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4998
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998

End Semester Examinations: July 2023

S. 4 . CC) Lem V

Program: B.Tech. in Civil Engineering

Course Code: PC-BTC402

Course Name: Structural Mechanics

1. Attempt any FIVE questions out of SEVEN questions.
2. Answers to all sub questions should be grouped together.

Duration: 3 Hours

Maximum Points: $\mathbf{1 0 0}$

Semester: IV
3. Figures to the right indicate full marks.
4. Assume suitable data if necessary and state the same clearly.

End Semester Examinations: July 2023

Q.3(a)	Find the slope and vertical deflection at the free end \mathbf{C} for the beam supported and loaded as shown in figure below. Use conjugate method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.3(b)	Find the slope and vertical deflection at C for the beam supported and loaded as shown in figure below. Use moment area method only.	10	3	3,4	$\begin{array}{\|l\|} \hline 1.3 .1 \\ 2.1 .3 \end{array}$
Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the horizontal deflection of joint E.	12	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.4(b)	Find the strain energy stored due to bending moment only for the beam loaded as shown in the figure below.	08	2	3,4	$\begin{array}{\|l\|l\|} \hline 1.1 .1 \\ 1.3 .1 \\ 2.4 .1 \end{array}$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai-400058
End Semester Examinations: July 2023

Q.5(a)	Locate the principal axes and find the principal moments of inertia for the angle section shown in figure below.	10	1	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.5(b)	The angle section with dimensions shown below (same as given in Q. 5(a)) is subjected to a bending moment of $\mathbf{4 0} \mathrm{kN}-\mathrm{m}$ at 50 degrees to the positive X axis as shown in the figure. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in the cross section. (The properties of the cross section obtained in Q5(a) can be used. No need to calculate them again.)	10 80		4	1.1 .1 1.3 .1 2.4 .1
					-
Q.6(a)	Determine the horizontal deflection of point A of the rigid jointed frame loaded as showh in figure below.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2,1,3 \end{aligned}$
					241
	(suman $\left.\right\|_{\infty} ^{\infty}$				

End Semester Examinations: July 2023

Q.6(b)	A timber column has a rectangular cross section of $150 \mathrm{~mm} \times 200 \mathrm{~mm}$ and length 3 m with both the ends fixed. Find the Euler's crippling loads of the column. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$	05	4	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.6(c)	Find the crippling load using Rankine's formula for the cast iron column of hollow circular cross section with external diameter 100 mm and internal diameter 80 mm and a length of 4 m . The column is fixed at one end and hinged at the other end. Take $\mathrm{f}_{\mathrm{c}}=550 \mathrm{MPa}$ and Rankine's constant $=1 / 1600$.	05	4	3,4	$\begin{array}{\|l} \hline 1.1 .1 \\ 1.3 .1 \\ 2.4 .1 \end{array}$
Q.7(a)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD.	12	4	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.7(b)	What do you understand by the principal axes of a given cross section? Explain	03	1	2	1.3.1
Q.7(c)	What are the assumptions made in the classical theory of buckling?	05	4	2	1.3 .1

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examinations, July 2023

210123

Duration: 3 Hour
Maximum points: 100
Semester: IV

Instructions:

1. Attempt any FIVE questions out of SEVEN questions
2. Answers to all sub questions should be grouped together
3. Draw neat diagrams wherever required
4. Assume suitable data if necessary and state the clearly.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q5 \& \begin{tabular}{l}
(a) Enlist the various stages of concrete production and discuss curing of concrete in detail. \\
(b) Differentiate between \\
(i) Light weight concrete and ordinary concrete \\
(ii) Retarder and accelerators \\
(c) How will you check the workability of flowable concrete?
\end{tabular} \& 8
8
4 \& 2 \& 2
2
1 \& \[
\begin{aligned}
\& \hline 2.1 .2 \\
\& 2.3 .1 \\
\& 1.2 .1
\end{aligned}
\] \\
\hline Q6 \& \begin{tabular}{l}
(a) How High Performance concrete (HPC) is differ than normal concrete? Discuss various ways to improve the concrete performance. \\
(b) Explain different methods of compaction with their suitability. \\
(c) How silica fume improve the performance of concrete?
\end{tabular} \& 8
8
4 \& 1

3
2 \& 2

3

3 \& $$
\begin{aligned}
& 2.3 .1 \\
& 1.3 .2 \\
& 1.4 .1
\end{aligned}
$$

\hline Q7 \& | Write explanatory notes on the following (ary Foury) |
| :--- |
| i) Cold weather concrete |
| ii) Rice husk ash |
| iii) Hydration products |
| iv) Alkali-silica reaction |
| v) Carbonation of Concrete |
| vi) self-compacting concrete | \& 5

5
5
5
5
5 \& 3
2
3
1
1
3 \& 2
2
2
2
2

2 \& $$
\begin{aligned}
& 1.3 .1 \\
& 1.3 .1 \\
& 1.3 .1 \\
& 1.3 .1 \\
& 1.3 .1 \\
& 1.3 .1
\end{aligned}
$$

\hline
\end{tabular}

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examinations July 2023

(2022-23)
Program: s.y. b. tech femity Civei
Course Code: PC-BTC-405
Course Name: HYDRAULIC ENGMEERING

Notes:

Duration: 03 Hrs.
Maximum Points: 100
Semester: IV

- Attempt any five questions.
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions				Points	CO	BL	PI
1	(a)What do you understand by model prototype relationship? Discuss the importance of laws of similarity, geometric, kinematic and dynamic similarities used in dimensional analysis.				10	4	2	1.3.1
	(b)State Buckingham's- π theorem. 'The ' η ' of a fan depends on density ' ρ ' and viscosity of fluid ' μ ', angular velocity ' ω ', diameter ' D ' and discharge ' Q '. Obtain a functional relationship for ' η ' in terms of dimensionless parameters.				10	4	4	2.1.2
2	(a)Explain briefly the phenomenon of water hammer flow in pipe lines and distinguish clearly between rapid closure and slow closure of valve.				05	1	2	1.3.1
	(b) Explain: Hardy cross method of pipe network analysis.				05	1	2	1.3.1
	(c) Three pipes connected in series discharge water from 80 meter level to 40 meter level. The details of piping system are as given in Table 1. Considering minor losses: determine discharge, velocity and head loss in each pipe. Table 1.				10	1	4	2.1.2
	Pipe	Length (m)	Diameter (cm)	Friction Factor (f)				
	1	1000	30	0.022				
	2	800	15	0.018				
	3	1200	25	0.021				
3	(a)Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel never exceeds 50%.				10	1	4	1.3.1
	(b)A $45 \mathrm{~m} / \mathrm{sec}$ velocity jet of water strikes without shock on a series of vanes moving at $12 \mathrm{~m} / \mathrm{sec}$. The jet is inclined at an angle of 23° to the direction of motion of vanes. The relative velocity of jet at outlet is 0.82 times, the value at inlet and the flow is radial. Determine: Vane angles at entrance and exit and Hydraulic efficiency.				10	1	5	2.2.3

BharatiyaVidyaBhavan's
SARDAP PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations July 2023
(2022-23)

4	(a)Discuss head and efficiency of hydraulic turbine and explain working of a Pelton type turbine with neat sketch.	10	2	2	2.1.2
	(b)In an inward flow reaction turbine the diameter at inlet and outlet are 1.20 m and 0.60 m . The hydraulic efficiency $=92 \%$. Head $=45 \mathrm{~m}$. The velocity of flow at outlet $=2 \mathrm{~m} / \mathrm{sec}$. The discharge at outlet is radial. The vane angle at outlet is 15°. Flow width is 0.10 m . at inlet and outlet. Determine: (i) the guide blade angle (ii) vane angle at inlet	10	2	4	2.3.1
5	(a)Explain: (i) Priming of a centrifugal pump; and (ii) Cavitation in centrifugal pump	$\begin{aligned} & 05 \\ & 05 \end{aligned}$	2	2	. 1
	(b) The impeller of a centrifugal pump runs at 500 r.p.m. and has vanes inclined at 120° to the direction of motion at exit. If the manometric head is 20 m and the manometric efficiency is 75%, determine (i) the diameter of impeller at exit, (ii) vane angle at inlet. Take the velocity of flow as $2.0 \mathrm{~m} / \mathrm{sec}$, throughout and the diameters of the impeller at exit as twice that at inlet.	10	2	4	3.1 .6
6	(a)Explain unit quantities for a hydraulic turbine and state the importance of specific speed.	10	2	2	2.1.2
	(b) Derive conditions for most economical triangular channel section.	10	2	3	3.4.2
7	(a) Explain specific energy and specific force diagram and discuss the importance of critical depth in channel flow.	10	3	4	2.3.1
	(b)Determine the most economical trapezoidal channel section with side slope of $2 \mathrm{H}: 1 \mathrm{~V}$ carrying a discharge of $12 \mathrm{cum} / \mathrm{sec}$ with a velocity of $0.85 \mathrm{~meter} / \mathrm{sec}$. Also determine the bed slope for this channel. Take Manning's ' n ' $=0.025$.	10	3	4	2.3.1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai) Munshi Nagar Andheri (W) Mumbai 400058

End SemesteExam
July 2023
Max. Marks: 100
Class: S.Y B. Tech

Name of the Course: Environmental Engineering I
Course Code: PC-BTC407

Duration: 3 Hrs
Semester: IV
Program: Civil

Instructions:

- Draw neat sketches/diagrams, wherever required and wherever design is asked.
- Assume suitable data if necessary and state them clearly
- Figure on right indicate maximum points for the given question, course outcomes attained and Bloom's Level
- All the best

Q3	Answer the following guestions:	(20)	1-4	3-4
(a)	Design a bell mouth canal intake for Nashik region drawing water from a canal built beside Gangapur reservoir which runs only for $\mathbf{1 0} \mathbf{h r s}$ a day with a depth of 2.0 m for the year 2040 . Also calculate head loss in intake conduit if treatment works are 0.4 km away. Draw a neat sketch. Given average consumption per person is 180 lpcd . Assume velocity through screens and bell mouth as $15 \mathrm{~cm} / \mathrm{sec}$ and $30 \mathrm{~cm} / \mathrm{sec}$ (for screens consider it is made of vertical iron thars of 20 mm dia and placed at 3 to 5 cm c to c). Design for average discharge. Assurne min water level in canal to be 0.4 rn below FSI」. Use head loss equation as - $\mathrm{v}=0.85 \mathrm{C}_{\mathrm{H}} \mathrm{R}^{0.63} \mathrm{~S}^{0.54}$ ($\mathrm{C}_{\mathrm{r}}=130$ depe ndent on pipe material, R is hydraulic mean depthand for circular section it is $\mathrm{d} / 4$; and S is slope of energy line or HI / L)	(15)		
(b)	Explain the concept of vertical flow sedimentation tanks.	(05)	1-2	2
Q4	Answer the q_{1} uestions	(20)	1-4	3-4
(a)	2 rectangular settling tanks are to treat 5 MLD of raw water. The sedimentation period is 6 hrs and velocity of flow is $3 \mathrm{~cm} / \mathrm{min}$ and depth 4.2 m . If 1.2 m depth out of 4.2 is for sediment allowance what should be length of basin and width of basin.	(05)		
(b)	Artics late where will you opt for plain sedimentation and which areas will you opt for coagulant aided sedimentation and why citing advantages and dis advantages of both the methods?	(05)		
(c)	De sign a mechanical rapid mix unit/units (dia and height) for the area of Nashik ff,r a design flow in 2040 and considering 180 lpcd average demand. Take value of μ as $1.0087 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$. Computepower requirements and give checks	(05)		
(d)	Design coagulant aided ideal sedimentation tank/tanks for Nashik city for 2040 considering 180 lpcd demand. Assume any data as required. Give required checks	(05)		
Q ${ }^{\text {P }}$	Answer the following questions	(20)	1-4	3-4
(a)	Explain any two color and odor removal methods in detail	(06)		
(b)	Explain 2 desalination methods with figures	(06)		
(c)	A cross flow borizontal paddle wheel flocculator is designed for Nashik city for population of 2040 with 180 lpcd average flow. The mean G value is $30 \mathrm{Sec}^{-1}$ and detention time is 40 min . There are three compartments with $\mathrm{G}_{1}=50 \mathrm{sec}^{-1}, \mathrm{G}_{2}=$ $25 \mathrm{Sec}^{-1}$ and $\mathrm{G}_{3}=15 \mathrm{sec}^{-1}$. Basins width is 30 m . Speed of blades relative to water is 0.8 times peripheral speed of the blade. Cd is 1.5 Find (1) Dimensions of the basin (2) Number of blades and geometry of basin (3) Power requirements (4) Rotational speed of shaft	(08)		
Q6	Answer the following Questions	(20)		
(a)	Design rapid sand filter for Nashik's design flow (with under drains and wash water troughs) for 2040 with 180 lpcd average demand.	(15)		
(b)	Develof, a plan for disinfection of rural water well. Rationalize your plan	(05)		
Q7	Answer the following questions (any 4)	(20)	1-4	1-4
(a)	Explain the (a) Ion exchangers (b) Fluoride removal	(05)		
(b)	Types of water distribution system	(05)		

(c) Explain the process of filtration and backwashing with a figure
(d) List the various water distribution system with figures and explain the one or two existing in Mumbai
(e) Explain chlorination. If the chlorine dose is $5 \mathrm{mg} / \mathrm{L}$ and residual chlorine is 3 mg / L what is chlorine demand? Is the dose of residual chlorine appropriate? If the
(f) Calculate lime and soda ash for hard water containing following parameters (a) $\mathrm{CaCl}_{2}=50 \mathrm{mg} / \mathrm{L}$ (b) $\mathrm{MgHCO}_{3}=40 \mathrm{mg} / \mathrm{L}$ for Nasik for a day. Consider 100 percent purity

FORMULA SHEET

$[r]^{n}-\quad \mathrm{Al}=27 \quad \mathrm{WLR}=0 / \mathrm{B}$
$P_{n}=P_{o}\left[1+\frac{r}{100}\right]^{n}$
$P_{n}=P_{o}+n \bar{x}+\frac{n(n+1)}{2} \bar{y}$
$\log _{e}\left[\frac{P_{s}-P}{P}\right]-\left[\frac{P_{s}-P_{o}}{P_{o}}\right]=-k P_{s}^{*} t$
$P_{n}=\left(P_{o}+n \bar{x}\right)$
$r=\sqrt[1]{r_{1}{ }^{*} r_{2}}{ }^{*} r_{3}^{*} \ldots \ldots \ldots r_{n}$

SA $A=$ volum	a/SOR
	0.5

Ratio of length to diameter of lateral ≤ 60
Spacing of laterals= spacing of orifices $=150$ to 300 mm

Dia of perforations 5 to 12 mm
(spacing 80 mm for 5 and 200 mm for 12 mm)
Total area of perforations ≤ 0.5
Total c / s area of laterals
Total area of pe rforation $=0.002$ to 0.003
Entire filter are a
Area of manifo $1 \mathrm{~d}=1.5$ to 2 times laterals
Rate of filtration $=300$ to $5001 / \mathrm{hr} / \mathrm{m}^{2}$
Rate of filtration $=3000-60001 / \mathrm{hr} / \mathrm{m}^{2}$
Max. demand= $=1.8 \mathrm{Q}$
$G=\sqrt{\frac{P}{\mu^{*} V}}$

$\begin{aligned} & \mathrm{Al}=27 \\ & \mathrm{Ca}=40 \\ & \mathrm{C}=12 \\ & \mathrm{O}=16 \\ & \mathrm{~S}=32 \\ & \mathrm{Cl}=35.5 \\ & \mathrm{H}=1 \\ & \mathrm{Na}=23 \\ & \mathrm{Fe}=55.5 \\ & \mathrm{Mg}=24 \\ & \mathrm{Si}=14 \\ & \mathrm{H}: \mathrm{D}=2.1 \end{aligned}$	$\begin{aligned} & \text { WLR }=\mathrm{Q} / \mathrm{B} \\ & \mathrm{WLR}=\mathrm{Q} / 2 \mathrm{JR} \\ & \mathrm{DT}=\mathrm{V} / \mathrm{Q} \\ & \mathrm{SOR}=12-20 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{~V}=0.849 \mathrm{CR}^{0.63} \mathrm{~S}^{0.54} \\ & \mathrm{SOR}=24-30 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{WLR}=200 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} \\ & \mathrm{DT}=20 \text { to } 50 \mathrm{~min} \\ & \text { Minimum distance between successive baffle } \\ & \text { walls } 0.45 \mathrm{~m}(\mathrm{~d}) \\ & \text { Clear opening at end of baffle and basin wall } \\ & =1.5(\mathrm{~d}) \end{aligned}$
$\mathrm{G}=300-700 \mathrm{~s}^{-1}$ 0.5 min to 1 min	$\begin{array}{r} \mathrm{P} \frac{1}{2} C_{d} \rho . A_{p} \cdot v_{\mathrm{r}}^{3} \\ C_{d}=1.8 \text { for flat paddles } \\ \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\ v_{r}=(1-0.25) v_{p} \end{array}$
$\begin{aligned} & \mathrm{v}_{\mathrm{s}}=\frac{1}{18} \frac{g}{v}\left(S_{s}-1\right) * d^{2} \\ & \text { Value of } v=1.002 \times 10^{-6} \\ & \mathrm{~m}^{2} / \mathrm{sec} \\ & v_{d} \\ & =\sqrt{\left(\frac{8 \beta}{f^{\prime}}\right)\left(S_{s}-1\right) d g} \\ & f^{\prime}=0.025-0.03 \\ & \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\mathrm{Q} / \mathrm{A} ; \mathrm{Q} /$ perimeter; Q / b; V / Q $\mathrm{V}=\mathrm{D}^{2}(0.011 \mathrm{D}+0.785 \mathrm{H})$ $\text { Rate }=3000-60001 \mathrm{itre} / \mathrm{hr} / \mathrm{m}^{2}$ $\mathrm{G}^{2} \quad=\mathrm{P} / \mu \mathrm{V}=\mathrm{C}_{\mathrm{D}} A \rho v^{3} / 2 \mu \mathrm{~V}$
$P=F_{D}{ }^{*} v_{r}$	$G * t=\frac{V}{Q} \sqrt{\frac{P}{\mu V}}=\frac{\sqrt{P V / \mu}}{Q}$

ALL THE BEST

Bharatiya Vida Bhavan's
 SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai) Munshi Nagar Andheri (W) Mumbai 400058

End Semester Exam

July 2023
Max. Marks: 100
Class: S.Y B. Tech

Name of the Course: Indian Traditional Knowledge

Course Code: MC 002

Duration: 3 Hrs
Semester: IV
Program: Civil/Elect

Instructions:

- Draw neat sketches/diagrams wherever required
- Figure on right indicate maximum points for the given question, course outcomes attained and Bloom's Level - All the best

ALL THE BEST

